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THE calculus of generating functions, discovered by LAPLACE, was, as is well known,
highly instrumental in calling the attention of mathematicians to the analogy which
exists between differentials and powers. This analogy was perceived at length to
involve an essential identity, and several analysts devoted themselves to the improve-
ment of the new methods of calculation which were thus called into existence. For a
long time the modes of combination assumed to exist between different classes of symbols
were those of ordinary algebra; and this sufficed for investigations respecting functions
of differential coefficients and constants, and consequently for the integration of linear
differential equations, with constant coefficients, The laws of combination of ordinary
algebraical symbols may be divided into the commutative and distributive laws; and the
number of symbols in the higher branches of mathematics, which are commutative with
respect to one another, is very small. It became then necessary to invent an algebra of
non-commutative symbols. This important step was effected by Professor Booirg, for
certain classes of symbols, in his well-known and beautiful memoir published in the
Transactions of this Society for the year 1844, and the object of the paper which I have
now the honour to lay before the Society is to perfect and develope the methods there
employed. '

For this purpose I have constructed systems of multiplication and division for func-
tions of non-commutative symbols, subject to the same laws of combination as those
assumed in Professor BooLr’s memoir, and I thus arrive at equations of great utility in
the integration of linear differential equations with variable coefficients,

I then proceed to develope certain general theorems, which will, I hope, be found
interesting. I have applied the methods of multiplication, as just explained, to deduce
theorems for non-commutative symbols analogous to the binomial and multinomial
theorems of ordinary algebra,

Lastly, I have shown how to employ the equations deduced in the earlier part of this
paper in the integration of linear differential equations. I have, for this purpose,
made use of methods closely resembling the method of divisors which has so long been
used in resolving ordinary algebraical equations. The whole paper will, I hope, be
found to be a step upwards in the important subject of which it treats. I shall just
observe, that the symbolical combinations used in this paper may also be applied to the
calculus of finite differences, as may be seen in Professor BooLE’s memoir.
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70 MR. W. H. L. RUSSELL ON THE CALCULUS OF SYMBOLS.

SecrioN 1. On the Principles of Symbolical Algebra.

Let (¢) and (7r) be two functional symbols combining according to the law ¢*f{(w)u
=f(w—mn)e"u, where (u) is the subject. 'We shall suppose throughout this paper that
=z, T=I d%

Let P, Q, and R be three functions of (7) and (g), such that PQ acting on any sub-
ject is equivalent to R acting on the same subject, or PQ=R. We shall say that P
- externally multiplies Q, and is an external factor of R. In like manner we shall say
that Q internally multiplies P, and is an internal factor of R. "We shall also say that R
is externally divisible by P, internally by Q.

We easily see the truth of the following symbolical equations depending on the laws
of combination assumed above :—

(e )g"s"Ju =g (v+a)fr’u
(e )¢"w") u=g¢"""(r—a)u.

We shall commence with instances of symbolical multiplication and division, when
the multipliers and divisors are monomials.

The following is an instance of external multiplication :—

er(¢"+er+7)=¢(r+2)+ (7)o
the following is an instance of internal multiplication :—
(2¢’ —3em*+ (7 + 7))o’ =2¢°n* — 3g*(w* +7)* g7 (w4 1) (v +2) ;
the following of external division :— ’
() (¢! +2)—2g'm(m+ 1) 4 3gm) =g —2gm 4 3%
the following of internal division :—
(€7 +3¢"(x*+7)+ en(x+1))(em) ' =¢"+ 3em+ #*.
‘We shall niow consider cases where the multipliers and divisors are polynomials.
The following are instances of external multiplication :—

e+7

—7

¢'+em
—g(7z'-|~].)—7l'2

ez — ¢ — e
g7r2—(7r-|—1)
er—m
¢(r+ 1)z —em(w+1)

—e(m+1)m’+a¥(z+1)
(r+ 1) —en(r+1) (w7 +1) 47 (x+1).
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The following are instances of internal multiplication :—
et
£—7
¢+d7+1)
—ow —a?
f2+ ? —_— 7’.2
gr*— (v+1)
er — 7
g7+ 1)7" —en(7+2)
—e7t +7(7w+1)
(v+1)r—en(z* +7+42)+7*(w+41).

The results of the four last examples may be written thus:—
(e—7)(e+7)=¢—e—7"
(e —a*)(en"— (7+1))=(¢’r —e(7"+7+1)+7)7(z+1)
(e+7)(e—m)=¢"+e¢—7"
(¢3°—(7+1))(er—7*)=(¢(#*+7)—¢(+* —7+2)+7)w(7r+1).

1 shall now give some examples of external division, the divisor being a polynomial.

g+7r)g3+2g2(9r+1)+g7r(27r+1)+7r9(g2+g'7r+7r”
¢+ ¢(v+2)
grter(27+41)
grter( 741)
e’ +7°
e’ 7t

57r+7r2)g3(7r+2)+g2(2w+3)—g(37r2+39r+1)+7r"‘(§’—g(7r+1)+7zﬂ
f(7+2)+¢( 7427
—¢( 7#+1)—¢(37°+37+1)
—¢(r+1y—e( 7+1)°
ew 47t
e’ 47t

We shall next consider some examples of internal division.

g-|—7r)g3-|-g“’(27r-|—-1)-|—g(27t'2-|-27r'+1)-}-7:'3(g"--|-g7r'—|-71.'2
e3+e27r
(m+1)+¢(27°+ 27 +1)
¢(m+1)+en’
(1t
g(m+1)+#*
L2
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g7r-|—7r2)g37r—2@27r+g(7r2+7r)+7r4(g2—g(7r-|—1)-|—7r2
grtg'n
—¢'(7+27)+o(w*+7)
— (7’ 27)—g(7 +1)7°
er(m+41)+47*
gm(w41) 4=t
The results of the four last examples may be written thus:
(e+m) (¢ +2¢(m+ 1) +gr(2r+1)+7) = Fer+°
(o5 (¢ +2)-+£(2m+8)— (3 + S+ 1)) =g g+ 1) 7
(¢*+¢(2r+1)+¢(27°+ 2r +1)+7")(g+7) '=¢"+ g7 +*
(67 —2¢"r +g(r*+7)+7')(er +7°) ' =¢"—e(r +1)+7"
I now come to two propositions of great importance.
First, to determine the condition that g, (7)+¥,() shall divide the symbolical func-
tion

Qn‘pn(”')"l' Qn_l¢n~1(7r) -+ Q“_2¢n—2(7") + &e. + ¢ 951(7") -+ ‘Po(ﬂ')
internally without a remainder,

(7)) ou(7)+- "¢n_1(vr)+g"‘2¢n_2(vr)+ coo - 2°0o(7) F 0 (7) + 0o(7)
g¢n(7r)+§"‘ 1)%(7’ —1)
& {%-1(7:-) 7 ,,_1)%(%- 1)]+e"‘ Puso()

o 1)
R CROET CINNC 1)}+e“{¢,f( y9a(s— )= e (r—2)]
0= {0~ o (= D)y S D =) | &

where the symbolical quotient is

»rl,—1¢”-(7r ]‘) n—2 ¢”"‘1(7r_1) 4’0(”—1) . ¢"" (7" 1)
Sr—1) ¢ {xmr—n ~ =10 (r—2) ¢"("°‘°)}+ {Mr_’“—)

Yolr—1) | Yol —1)do(r—2)
P =Dy e ) e

The re‘quired condition is found by equating the remainder to zero; and we have

olm)g(r—1 ol (T — 1) (r—2
() g (= 1) ) g ) D (e — 9) &

Yo —y(mr—2) .. . Yp(r—n+1)
g e T (3] =P (F =0,

where g,(#)+o(#) is an internal factor of g, (#)+¢"'¢,_,(7)+ &c. +@y(7).
Hence we see how we may resolve the symbolical function

F 07+ Pur(7) " o) o efi(7) F0u(7)

into factors in all possible cases.

b
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Put
Yo(7) =A,+Br+Cyr* - &,
$i(7)=A,4+B7+C7*+&e.,
and substitute in the above equation, and equate the resulting coefficients of # to zero.
We shall thus be furnished with equations for determining the values of A,, B, &c.,
A,, B,, &c. in all cases in which the above symbolical function is capable of resolution.
We thus obtain the values of J,(#), J,(#), and of the symbolical quotient. We next

ascertain if the symbolical quotient admits of an internal factor, and repeating the pro-
cess we at length resolve the above symbolical function into factors of the form

(e () 5 (m) (e (#) 48 0()) -« (edi(%) o))
To determine the condition that g,(#)4-+y(#) shall divide the symbolical function
g"07)4 En_'l@z—l("’) + En_z@n—z(w) +&e. +§’§D1(W) + ‘po('”)

externally without a remainder,

Q"’/l(”') + ’l’o(”))?n‘pn(”')"' anlcpn—l(”) + Qn~2¢n—2(7") + &e. <+ €2¢2(7") + Q‘pl("r) +‘po(7’)

n n—)‘l’ 7+ 1)
¢ou(m) e Pt o (x)

w+n—1
n-— {én—l( ) iO('n'-li_-Z— ;¢n(7)}+gn—2¢n—2(7r)
o Yo(m+n—1) s [ Vo(m+1—2) Yo +n—2Wo(m +n—1)
{‘Pn~l(7') g e )‘Pn(”)} {¢T(w+n—2)¢”"l( )=l =)yt a—1) O™ )}
T 2 n 2) 1)
¢ B (7)— i) O (D) o m oy i) Pl e
where the symbolical quotient is

n_;l ¢n(7f) ne2 én—l(”) _ » \!}0(” +n— 1)
y(m+n=1) + {¢1(7r+n—-2) (@ +n—2),(r+n—1) qi,,(n')}

9

n—3)  PnsT Yo(m+n—2) Yolr +n—2)Po(x +n—1)
g G o £ =2) P D) G TS sy o) |+ e

The required condition is found by equating the remainder to zero: whence we have

0u(m)— ) g () 4 ST E D g ) — Il L D+ D ()

omWo(m + Ddo(m+2) o o Yg(m +n—1)
e e a1 Pulm)=0.

In the next investigation we shall suppose the symbolical function arranged in powers
of (=) instead of powers of (¢). To determine the condition that «,(e)=-++J,(¢) may be
an internal factor of the symbolical function

0s(e)7* 4 0o(2)7* + @,(e)7 + @4(e)-
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We easily see that
d
70(e)=p(e)w ¢ 7% o(e)
PR d d\2
*0(e)=0(g)7*+2¢ % o(e)7+ (3 ;@) o(e).

Hence we shall have
1
¢3(e)7r”{¢le-7r}“=¢3(e)7r”-¢—l§=%*f§ W“‘+2¢s(e)(5dg) e ‘7"+¢’3(§’)<f dg) Ok

0w ={ 2D 1 20,) (o) 556 (e8y) g MO O~

—0 gg P{le) mH 42000 (6 ) s @)

+206) (e ) gz Ml — 55 )

_f 3 {4, (e)vr+¢o(§)}+2¢s(e) (Edg) hip Chldrteg, A0
+¢3(?)<§dg) W Wle)m

¢s(g) {%(g) 42 (e dg)%(g) 4 (e dg) %(e)}

- o) 7"3+¢2(€)7’2+¢1(€)-7’+%(E)
=§;"‘—§ 7 () (e)7 +ole)}

He0+200 (2 7,) g HO— 55 4@}
+Ho@+2000(e7) s e 5 1 O+20 (2 7) g ©—2 51 (e) woo)}

o)) =525 () Wie);
where we may put

e)=2e)+2006) (e85 HO— TG (o)
e =0(0)+2040) (535 )3 (20 )4 OF+040 (2) g H O —2515 (e7) %o
he =2le)— &0 gg)) (ﬁdg> Yile)
1
U =000 7 g =+l () 57
o= vr{we)wwo(g)}

~—%—?—{¢o(e).vr+g@¢o<g>}+og(g) (¢% )57 W0
=L bl =000 {8 — et (5 40 br— g ).




MR. W. H. L RUSSELL ON THE CALCULUS OF SYMBOLS. 75

Then
Gz(e)ﬂ’+0l(e)7r+9o(g)—¢ (g

- e

+{90(€)_¢, (e) ¢ de ‘POQ}
Put, for the sake of simplicity,

()7 +bole))

w(g)="0(g)— + 2§ ng Tg Vg
| wo(g)=9oe—fl§e;z§%(e)
wl(g).vr.{«,blgw}“=—
oD =2 (g 2+ =5 (o)

s toe) =75 (b + ¢oe)+wo(e)—471% Wile)
Hence the condition that «,(¢)7+,¢ may be an internal factor of
¢3(€)‘7"3+¢1(8)‘7"2+‘Pl(@)’"""‘q)o(g)

is equivalent to the equation

“’1(@)‘4/0(@) "‘“’o(@)'\lll(g)"—' 0.

Hence, substituting for »,(¢) and wy(¢) their values, we hdve

9(@)%(@)— (%(e))’+92(e)%(e)edg ¢ 2 Vie—b(e) (e)+9a(e)edg Yo(g)=0;
or, again substltutmg for 8y(¢), 6.(e), ba(e), we have

{o0)+2040) (275 g sy @) Hez s u@le- gy ()=}

o200 s ) (e o0 a8 o)
— {00~ (24,) o)} =0.

Had we wished to ascertain the condition that {,(¢)w+¥,(¢) may be an internal factor of
¢4(€)7r4+ <p3(€)773+ @2(@)7"2'1'@1(@)7" +¢0(€)’

we must have calculated the value of #°¢(¢). It is evident that for every increase in the
degree of the highest power of (), the labour of the investigation becomes immensely
greater, and the result far more complicated. It is, however, of considerable utility in
the integration of differential equations, and we shall refer to it again at the close of
this paper.
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SecrioN 11, On some General Theorems.

I shall now give some theorems in general differentiation and expansion.

Since . . )
)= () () (o)
(j;a 71')”=g71” (7 —2)(7—4)....(#—2n+2),

Rl =

to » factors, we have

1 "1 1
(*e—g'%‘) . §=gg,,ﬂ(7:——1)(7:'-—3)...(95’»27&+1) ;
whence we easily see that

z'(vr--l)(«'—Z)(x'—S). (7 =2n41)=¢"" (é; w)ng”"“(gg ar) “,

é—nz‘(%‘—l)(ﬂ'-—z)(w——3)..,(9,-_2n+1)=g(1 )”g’,”"‘ (1 )n,

¢
() ) ()
whence we shall have

d®u 1 AN il dN\°
(i) (i)™

="\ I x dz
If we equate the coefficients of 2" in (142)*=(14-2)*(2+1)", we have

2n(2n—1)(2n— ) (2n—-r+ 1) nn—1)(n—2)...(n=r+1)
1.2.3.. 1.2.3...r

nn—1)(n—2)...(n=—r+2) n(n—1)...(n~r+3) n(n—1) .
SR W7 Touv-s Rl HS T T y; Bt B A AR

2r(2r—1)(27—2)....( 2 —r+1)
=a(r—1)...(x—r+1)+ra(z—1)(7—2)...(x—r+2)7
4 S w(m—1)x=2)...(z—r+3). a(r—1).

Hence, since
1 T 1 1 r—1
<—l 7r> ._———1%‘(W’—g)(%’-—l)...,(%’—T),

we have d © 1
SRR NECHE
() e

whence we find
rrod 4t du r—1 . dr-3  d% o
“‘( - w) um=a g ' b o o o
¥ It has been pointed out to me that this theorem might be more shortly provedv by applying VaxpEr-

MONDE’S theorem to the equation (2D)'=(D+D)". T have retained the demonstration in the text merely
for the sake of the method.
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I now come to the theorems respecting expansion, which I mentioned in the begin-
ning of the paper as analogous to the binomial and multinomial theorems in ordinary
algebra.

To expand (g?4-¢b(w))" in powers of =, where §() is a function of (), and (n) is a
positive integer.

Let us assume

(& +ed(7))=0"(e)+ 02 (¢) - 7+ 0 (e )7+ &e.,

where
9 (g)=g"+ALE" "+ ADgn &
g =BWgt 4 BUGMt4BY g f-&e
Gilg ="t AR Al
=gt AP AP 4 &,
4+ 42n)e ' +API(2n—1)g+&e. ;
AD =AD+(2n), AZ,=AP+APY(2n—1);
. AP=242n), AP=3(4(2n—1)20(2n)).
Similarly,

A®=3{0(2n—2)3(/(2n—1)302n))} . .. &c

Again, we shall have

5»14)-1(5) Bfw?-)H E2n+l+ 5!2-1?2”_'- 2-)l-1§2n—1+ &ec.
=0(2n)g" "+ ALY 2n—1)g" 4 AP (20— 2)g .
+B§3) f2n+l+ Bg)g‘m_{_ B;z)ezn-—l_i_”

+BYd(2n—1) " +BPY(20—2) ¢+ &e.
Consequently
B®,=B®44(2n); o By =30(2n)

B, =BP+BPI2n—1)4 AP0 (2n—1);
o BP =3(0(2n—1)320(2n)) 420 (2n—1)20(2n)).
Hence we shall have
(& +el(7))'=¢"+20(2n). ¢! |

+324(2n—1)20(2n)™ 2+ 20(2n—2) 20(2n — 1)20(2n)e™ ~* 4 &c.

+ {34 (2n)e ' +(30(20n—1) 30 (2n)+ 20 (2n—1)24(2n))e™ >+ &c. } w4 &e.
When 4(#) is a rational and entire function of (#),

34(2n), 3(8(2n—1)2(2n)) &c.; and 24(2n) &c.
can always be obtained in finite terms, as manifestly ought to be the case.
In like manner we shall have

(s+5400) "=+ 38m)"

MDCCCLXI. M
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+2(8(n—2)28(n))e"*+={8(n—4)2(6(n—2)2b(n))} "+ &e.
+ {26 (n)g" >+ (26 (n—2)20(n)+ 24 (n— 2) =4'(n) )e*~* 4+ &c. } w+ & ;

and also
(¢+50m)) = 2a2mgm
+2(6(2n—3)24(2n))g* 4+ Z{8(2n— 6) =(6(2n—3)=H(2n))} e I+ &e.
+ {Z6(2n)e™*4-( SG'(Q%— 3)20(2n)+ 26(2n—3)24'(2n))g™*+&e. } 7 +&e.

If we put §(#)==" it is obvious that the three last theorems will give us the ex-
pansions of

d dQ n d .dQ n o d dQ »
<x2+w2d—x+x3%g>, <x+%+wd—w9>, and of <a~+%+x;@)
. ; d
in terms of &7

The same methods of course will apply to all binomials included under the form
(¢"+¢%(=))". 1 have found that there is no difficulty in calculating the forms of the
coefficients, beyond the labour expended in performing the finite integrations.

To determine that part of the expansion of (¢*4-¢*~'8,(7)+¢* %y(7) +¢*%(7) +&e.)”
which is independent of .

Let us assume

(e 8 (m)+ )+ ) =00+ 90(e) 7 90(e) ..
where
.¢;0)(g)=eam+As)gan—-l+A£‘2)gom—2+A§lS)ean—3+J”
Then we shall have

eh(g)=e** 4 Aflgm '+ AP et A gt
=eotn+u + A;l)gcm+a—l+ Ag)em@+u—2+ Agls)grm+a—~3+."
+61(0¢9’&) Qan+a_l+‘A§:)Gl (w%—-1)g“”*“‘2+A£f?el(an_2) ean+a—3+. B

S G A (an—1) g

+ 63(“n)eom+u—3+” .
. A0, =AD46,(an)
AP =AP+ ALY (an—1)40,(an)

AL =AD+APS, (an—2)+ APb,(an—1)+40,(an)
&e. = &e.; A

oo AD=30,(an)
AP =28,(an—1)20,(en)+=6,(en)
AP =24,(an—2)28,(an—1)=0,(an)
+ =6, (an—2) =6, (o) + Z6,(an—1)26,(an)+ Zh,(en) ;
and consequently the part of
(¢"+e 7 0u(m) +e**by(m)+...)",
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which is independent of (=), is
¢+ =6, (an)g* " (26, (an—1) =0, (en) + =h,(an) )g* 2
+ (26, —2) ), (e — 1) 6, (cem) -+ 0, (e — 2) Sh,(eem)
+20,(een —1)28,(an) 4 Zb(an) )™+ ..

SecrioN IIL. On the Solution of Linear Differential Equations with Variable Coefficients.
The general linear differential equation

dar dr—? dr-2
X, o+ X g A Xt &e=X,

where X,, X,_, are rational and entire functions of (), may, as Professor BooLE has
shown, be always expressed in the symbolical form

" @ (mYu4e" '@, (7w )u+ ... ¢y (7)u+ (7 =X,

where
d

=2, and r=a P
and ¢,(x), @,_,(w), &ec. are rational and entire functions of (7).

Suppose that by using the methods explained in this paper, we are able to reduce this
equation to the form

(Y ()4 () U m) U () () () =X %,

Assume
oW (VP (), =X
eV ity V(7 Vit =
QW (T Yt s+ (7 Yy =y
&e. —&e.

eh(r) v b (T =

‘We thus reduce the proposed differential equation to forms already treated of by Pro-
fessor BooLE.

We may much simplify the process already explained for treating the symbolical
quantity ¢"@,(w)+&c.+@,(x), by remarking that J,(=) must be sought among the divisors
of ¢,(x), Yo(w) among the divisors of @,(); and we shall make use of this principle in
the following application of the preceding theory to the solution of differential equa-
tions. .

We shall denominate the equation deduced in the former part of this memoir,

@o(7)— \;,%(" N Al (= 1)+¢, (,,__)4,)0‘&”(”_1_) o) @y —2)—&e. =0,

the criterion of the factor gl (m)+d(7).

* Tt may be proper to remind the reader that ¢™(x), $@-1(x), &ec. have no reference to the functions
y be prop 1
derived from Y= by differentiation.

M2
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To integrate the differential equation,
2 s Pu ) 3 : du
2 (@+1) 75+ 30(v+1) 7= +(2°+ 42+ 37) 7 — (2a—3Ju=X.

The symbolical form of this equation is
o’ 7ut¢ (37 7 —1)u43¢(7* + 1 Ju+7(+*—1 Ju=Xuz.

The divisor of #* is # only, the divisors of #(#*—1) are #—1, =, #-+1; hence putting
(7)==, Yyr=x—1, we find the criterion of the symbolical quantity g,(#)-+ (=) to
become

(7 —1)=3{(#=1)+1} 4+ {3(#—2)°+(#—2)—1} — (#—3)*=0,
an identical equation.

Hence g7+ (#—1) is an internal factor of

7 @357 — 1) 3(w+ 1) a(s"—1);
and the equation may be written, effecting the internal division,
(P(r— 1P+ o(m+1)2r—3)+a(r-+ 1)} (gm+(7—1)u=Xz;
or if gz +(v—1)u=u,,
{g(7—1)+¢(+1)(27—38)+#(7 +1) }u,=Xu.
The only divisor of (w—1) is #—1, the divisors of #(x+1) are = and #+1; and by

trial it is found that the divisor g(w—1)+(w+1) satisfies the criterion, and is therefore
an internal factor. Hence, effecting the internal division,

(¢(m—2)+=)g(m—1)+(v+1))u, =X,
and the differential equation becomes '

(e(m—2)+7)(e(r=1)+(x+1))(¢r+(r—1)Ju=Xuz,

or

d d '
{(x2+w)%—2w}{(:ﬁ+x)%—(x—l)}{(wﬂ+w)%—1}u=Xx.
Hence, performing the inverse calculations, we find for the complete infegral ;
oz (de(e+1)?*( dz (* Xdzx
U=F 1j‘ P z+1 (.z'+1)3’
the three arbitrary constants being included under the signs of integration.
In case this method does not succeed, we may sometimes resolve the symbolical
function into factors by assuming u=(w4-£)v and proceeding as before, determining («)

from the criterion, as will be shown in the following examples :—
To integrate the differential equation

2@+ 1) Tt o(da’+ 110+ 100+ 8) o 4 25 4 100+ 5 — 3=X.
The symbolical form of the equation is

(7 + 37 42)+°(37°+ 87 +10) 4¢3+ Ta+6) + 7*+ 27— 3=X.
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Let w=(#-+£)v, and the equation becomes
E(741) (74 2)(7+E)v+ (37 + 87+ 10)(w+-E)v
+e(37°+T7+6)(w+E)v+ (7—1)(7 4 3)(x+Ep=X.
Let ¥ (7)=7+42, ¥,(7)==+E, then the criterion of g(7w+42)4(#-+£) become
(s +27— 8)(r 8 — s (37 e 1) (7 E— 1)

(e O)(r+—2)

(m m+E—1)(= 2
_ +E;((WL) (W)(_;;E )/7;-2—-37r+2)(vr+«§ 3)=0.

Put #=0 to determine &, and we have £=0 as one value of £ which on trial is found
to satisfy the proposed.

Hence g(742)-+= is an internal factor of the symbolical function
(7w +1)(742)+¢’(37°+ 87+ 107)
+e(37°+Ta*+57)+#(w—1)(7+43).
Wherefore, effecting the internal division, the equation becomes

(e7+e(27+3)+7+ 3)(7—1)(e(7+2)+7o=X,

whence performing the inverse calculations, we have

s Jutrf

(@r1y
. u_wdx{(x+l)g§d (% +1)de(w+1 j't(i:_fgg},

where the arbitrary constants must be reduced to two,
Next consider the differential equation

(2207 a%) T — 6(a*+) % 4 6(a+2)u=X ;
the symbolical form of this equation is
(7 —1)u+2¢(7w—1)(7—3)u+(7—3)(w —4)u=X.
Let u=(7+£), and the equation becomes
gr(r—1)(7+Ep+2¢(m — 1)(7—3)(m+-E)o+ (7 —3)(w —4)(x +Epp=X
Let 4, (7)=7—1, 4 (7)=n—3, and the criterion becomes.

(7= 8)(r— ) (m+§) — o (2(r—2)(r— 4)}(m+E—1)

+E::§%:§‘{( —2)(w—3)}(w +£—2)=0.

Putting =0 in this equation, we have §=0, and this value renders the above equation

identical,
g(m—1)+(r—3)
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is an internal factor of the symbolical function
gr(m—1) 4 2gr(m —1)(m— 8)(m — 3)(m—4)

wherefore, effecting the internal division, the equation becomes
{e(m=1)+r(r—4} {e(r—1)+(r—3)}u=X.

This equation may be written

{ERe e e ) S M~ D+ - 8)=X.

in which the inverse calculations are all practicable.
As a final example we take the differential equation

2
(@ 4a* 4 5054 20%) T 4 (204 805450’ — 62) o 4 (a1 Ju=X.
The symbolical form of this equation is

gr(r+1utd(dn* —r+1)uto(55* —5r+2)u+(r—1)2r—1Ju=X

If we put u==v, the equation becomes

(e+1)(m—=1)(e(r —1)+-7)(er +(2r —1)pp=X,
in which the inverse calculations necessary for the solution of the equation are all
practicable.
In cases where the assumption w=(7-4&) does not lead to the solution of the equa-
tion, we may assume y=(=+& )(w+£,)v, and proceed as before.
We may also treat linear differential equations by ascertaining the condition that
J(e)m+Jo(e) may be an internal factor of this symbolical expression,

#ue) 7"+ 0un(e)" 7+ &e. + o(e)r+04(e)-
I have shown how this is to be effected when n=2 or 3.
For higher degrees the investigation would be very laborious. In all cases in which
the second member of the differential equation is zero, this internal factor, supposing
it to exist, would conduct us to a particular integral.



